Fact verification has attracted a lot of research attention recently, e.g., in journalism, marketing, and policymaking, as misinformation and disinformation online can sway one's opinion and affect one's actions. While fact-checking is a hard task in general, in many cases, false statements can be easily debunked based on analytics over tables with reliable information. Hence, table-based fact verification has recently emerged as an important and growing research area. Yet, progress has been limited due to the lack of datasets that can be used to pre-train language models (LMs) to be aware of common table operations, such as aggregating a column or comparing tuples. To bridge this gap, in this paper we introduce PASTA, a novel state-of-the-art framework for table-based fact verification via pre-training with synthesized sentence-table cloze questions. In particular, we design six types of common sentence-table cloze tasks, including Filter, Aggregation, Superlative, Comparative, Ordinal, and Unique, based on which we synthesize a large corpus consisting of 1.2 million sentence-table pairs from WikiTables. PASTA uses a recent pre-trained LM, DeBERTaV3, and further pretrains it on our corpus. Our experimental results show that PASTA achieves new state-of-the-art performance on two table-based fact verification benchmarks: TabFact and SEM-TAB-FACTS. In particular, on the complex set of TabFact, which contains multiple operations, PASTA largely outperforms the previous state of the art by 4.7 points (85.6% vs. 80.9%), and the gap between PASTA and human performance on the small TabFact test set is narrowed to just 1.5 points (90.6% vs. 92.1%).
translated by 谷歌翻译
面向任务导向的对话系统已经受到获得大规模和高质量的注释对话的困难困扰。此外,大多数公开的数据集仅包括书面对话,这不足以反映实际口头对话系统中的实际人类行为。在本文中,我们提出了面向任务的对话数据增强(TOD-DA),这是一种新型模型 - 不可知的数据增强范例,以提高面向任务对话建模的鲁棒性。 TOD-DA由两个模块组成:1)对话丰富,以扩展关于易于执行数据稀疏性的任务对话的培训数据,用于宽松数据稀疏性和2)口语对话模拟器,以模仿各种粒度的口语样式表达和语音识别错误,以弥合书面之间的差距和口头对话。通过这样的设计,我们的方法在DSTC10 Track2的两个任务中排名第一,这是针对口语对话的任务对话建模的基准,展示了我们提出的TOD-DA的优势和有效性。
translated by 谷歌翻译
图表神经网络(GNNS)在图形结构数据的表现中表现出巨大的成功。在捕获图形拓扑中,GNN中的层展图表卷积显示为强大。在此过程中,GNN通常由预定义的内核引导,例如拉普拉斯矩阵,邻接矩阵或其变体。但是,预定义的内核的采用可能会限制不同图形的必要性:图形和内核之间的不匹配将导致次优性能。例如,当高频信息对于图表具有重要意义时,聚焦在低频信息上的GNN可能无法实现令人满意的性能,反之亦然。为了解决这个问题,在本文中,我们提出了一种新颖的框架 - 即,即Adaptive Kernel图神经网络(AKGNN) - 这将在第一次尝试时以统一的方式适应最佳图形内核。在所提出的AKGNN中,我们首先设计一种数据驱动的图形内核学习机制,它通过修改图拉普拉斯的最大特征值来自适应地调制全通过和低通滤波器之间的平衡。通过此过程,AKGNN了解高频信号之间的最佳阈值以减轻通用问题。稍后,我们通过参数化技巧进一步减少参数的数量,并通过全局读出功能增强富有表现力。在确认的基准数据集中进行了广泛的实验,并且有希望的结果通过与最先进的GNNS比较,展示了我们所提出的Akgnn的出色表现。源代码在公开上可用:https://github.com/jumxglhf/akgnn。
translated by 谷歌翻译
在这封信中提出了一种新的基于触诊的切口检测策略,潜在地用于机器人气管术。引入触觉传感器以通过轻轻接触测量特定喉部区域中的组织硬度。提出了内核融合方法以将平方指数(SE)内核与ornstein-uhlenbeck(OU)内核组合,以弄清楚现有内核功能在这种情况下的缺点是不够最佳的。此外,我们进一步规则化探索因子和贪婪因子,并且触觉传感器的移动距离和机器人基准的旋转角度在切口定位过程中被认为是采集策略中的新因素。我们进行了模拟和物理实验,以比较新提出的算法 - 重新分配采集策略与热气检测中的能量限制(RASEC),具有当前的触诊的采集策略。结果表明,具有融合内核的建议采集策略可以通过最高算法性能成功定位切口(平均精度0.932,平均召回0.973,平均F1得分0.952)。在机器人触发过程中,累积移动距离减少了50%,累积旋转角度减少了71.4%,没有牺牲在综合性能能力中。因此,证明RASEC可以有效地表明喉部区域中的切割区域,大大降低了能量损失。
translated by 谷歌翻译
Optical coherence tomography (OCT) captures cross-sectional data and is used for the screening, monitoring, and treatment planning of retinal diseases. Technological developments to increase the speed of acquisition often results in systems with a narrower spectral bandwidth, and hence a lower axial resolution. Traditionally, image-processing-based techniques have been utilized to reconstruct subsampled OCT data and more recently, deep-learning-based methods have been explored. In this study, we simulate reduced axial scan (A-scan) resolution by Gaussian windowing in the spectral domain and investigate the use of a learning-based approach for image feature reconstruction. In anticipation of the reduced resolution that accompanies wide-field OCT systems, we build upon super-resolution techniques to explore methods to better aid clinicians in their decision-making to improve patient outcomes, by reconstructing lost features using a pixel-to-pixel approach with an altered super-resolution generative adversarial network (SRGAN) architecture.
translated by 谷歌翻译
Weakly-supervised temporal action localization (WTAL) learns to detect and classify action instances with only category labels. Most methods widely adopt the off-the-shelf Classification-Based Pre-training (CBP) to generate video features for action localization. However, the different optimization objectives between classification and localization, make temporally localized results suffer from the serious incomplete issue. To tackle this issue without additional annotations, this paper considers to distill free action knowledge from Vision-Language Pre-training (VLP), since we surprisingly observe that the localization results of vanilla VLP have an over-complete issue, which is just complementary to the CBP results. To fuse such complementarity, we propose a novel distillation-collaboration framework with two branches acting as CBP and VLP respectively. The framework is optimized through a dual-branch alternate training strategy. Specifically, during the B step, we distill the confident background pseudo-labels from the CBP branch; while during the F step, the confident foreground pseudo-labels are distilled from the VLP branch. And as a result, the dual-branch complementarity is effectively fused to promote a strong alliance. Extensive experiments and ablation studies on THUMOS14 and ActivityNet1.2 reveal that our method significantly outperforms state-of-the-art methods.
translated by 谷歌翻译
Photometric stereo recovers the surface normals of an object from multiple images with varying shading cues, i.e., modeling the relationship between surface orientation and intensity at each pixel. Photometric stereo prevails in superior per-pixel resolution and fine reconstruction details. However, it is a complicated problem because of the non-linear relationship caused by non-Lambertian surface reflectance. Recently, various deep learning methods have shown a powerful ability in the context of photometric stereo against non-Lambertian surfaces. This paper provides a comprehensive review of existing deep learning-based calibrated photometric stereo methods. We first analyze these methods from different perspectives, including input processing, supervision, and network architecture. We summarize the performance of deep learning photometric stereo models on the most widely-used benchmark data set. This demonstrates the advanced performance of deep learning-based photometric stereo methods. Finally, we give suggestions and propose future research trends based on the limitations of existing models.
translated by 谷歌翻译
With the success of Vision Transformers (ViTs) in computer vision tasks, recent arts try to optimize the performance and complexity of ViTs to enable efficient deployment on mobile devices. Multiple approaches are proposed to accelerate attention mechanism, improve inefficient designs, or incorporate mobile-friendly lightweight convolutions to form hybrid architectures. However, ViT and its variants still have higher latency or considerably more parameters than lightweight CNNs, even true for the years-old MobileNet. In practice, latency and size are both crucial for efficient deployment on resource-constraint hardware. In this work, we investigate a central question, can transformer models run as fast as MobileNet and maintain a similar size? We revisit the design choices of ViTs and propose an improved supernet with low latency and high parameter efficiency. We further introduce a fine-grained joint search strategy that can find efficient architectures by optimizing latency and number of parameters simultaneously. The proposed models, EfficientFormerV2, achieve about $4\%$ higher top-1 accuracy than MobileNetV2 and MobileNetV2$\times1.4$ on ImageNet-1K with similar latency and parameters. We demonstrate that properly designed and optimized vision transformers can achieve high performance with MobileNet-level size and speed.
translated by 谷歌翻译
Recent efforts in Neural Rendering Fields (NeRF) have shown impressive results on novel view synthesis by utilizing implicit neural representation to represent 3D scenes. Due to the process of volumetric rendering, the inference speed for NeRF is extremely slow, limiting the application scenarios of utilizing NeRF on resource-constrained hardware, such as mobile devices. Many works have been conducted to reduce the latency of running NeRF models. However, most of them still require high-end GPU for acceleration or extra storage memory, which is all unavailable on mobile devices. Another emerging direction utilizes the neural light field (NeLF) for speedup, as only one forward pass is performed on a ray to predict the pixel color. Nevertheless, to reach a similar rendering quality as NeRF, the network in NeLF is designed with intensive computation, which is not mobile-friendly. In this work, we propose an efficient network that runs in real-time on mobile devices for neural rendering. We follow the setting of NeLF to train our network. Unlike existing works, we introduce a novel network architecture that runs efficiently on mobile devices with low latency and small size, i.e., saving $15\times \sim 24\times$ storage compared with MobileNeRF. Our model achieves high-resolution generation while maintaining real-time inference for both synthetic and real-world scenes on mobile devices, e.g., $18.04$ms (iPhone 13) for rendering one $1008\times756$ image of real 3D scenes. Additionally, we achieve similar image quality as NeRF and better quality than MobileNeRF (PSNR $26.15$ vs. $25.91$ on the real-world forward-facing dataset).
translated by 谷歌翻译
The task of response selection in multi-turn dialogue is to find the best option from all candidates. In order to improve the reasoning ability of the model, previous studies pay more attention to using explicit algorithms to model the dependencies between utterances, which are deterministic, limited and inflexible. In addition, few studies consider differences between the options before and after reasoning. In this paper, we propose an Implicit Relational Reasoning Graph Network to address these issues, which consists of the Utterance Relational Reasoner (URR) and the Option Dual Comparator (ODC). URR aims to implicitly extract dependencies between utterances, as well as utterances and options, and make reasoning with relational graph convolutional networks. ODC focuses on perceiving the difference between the options through dual comparison, which can eliminate the interference of the noise options. Experimental results on two multi-turn dialogue reasoning benchmark datasets MuTual and MuTual+ show that our method significantly improves the baseline of four pretrained language models and achieves state-of-the-art performance. The model surpasses human performance for the first time on the MuTual dataset.
translated by 谷歌翻译